MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. SAE-AISI 1212 Steel

C92200 bronze belongs to the copper alloys classification, while SAE-AISI 1212 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is SAE-AISI 1212 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
11 to 28
Fatigue Strength, MPa 76
200 to 290
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 280
440 to 620
Tensile Strength: Yield (Proof), MPa 140
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
52
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
1.8
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
64 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 87
180 to 560
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.9
15 to 22
Strength to Weight: Bending, points 11
16 to 20
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 9.9
14 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.25
98.5 to 99.07
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.7 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0.070 to 0.12
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0.16 to 0.23
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0