MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. S15700 Stainless Steel

C92500 bronze belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
1.1 to 29
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 310
1180 to 1890
Tensile Strength: Yield (Proof), MPa 190
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 63
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 35
15
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 61
47
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 170
640 to 4660
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.8
42 to 67
Strength to Weight: Bending, points 12
32 to 43
Thermal Diffusivity, mm2/s 20
4.2
Thermal Shock Resistance, points 12
39 to 63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.75 to 1.5
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 85 to 88
0
Iron (Fe), % 0 to 0.3
69.6 to 76.8
Lead (Pb), % 1.0 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.8 to 1.5
6.5 to 7.7
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.7
0