MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. EN 1.4123 Stainless Steel

C92600 bronze belongs to the copper alloys classification, while EN 1.4123 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is EN 1.4123 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 300
720 to 810

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 840
1410
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 67
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
10
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.6
4.2
Embodied Energy, MJ/kg 58
62
Embodied Water, L/kg 390
120

Common Calculations

Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
26 to 29
Strength to Weight: Bending, points 11
23 to 25
Thermal Diffusivity, mm2/s 21
6.3
Thermal Shock Resistance, points 11
26 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.35 to 0.5
Chromium (Cr), % 0
14 to 16.5
Copper (Cu), % 86 to 88.5
0
Iron (Fe), % 0 to 0.2
76.7 to 84.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 0 to 0.7
0 to 0.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.3 to 10.5
0
Vanadium (V), % 0
0 to 1.5
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0