MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. SAE-AISI 1006 Steel

C92600 bronze belongs to the copper alloys classification, while SAE-AISI 1006 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is SAE-AISI 1006 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
94 to 100
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
22 to 33
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 300
340 to 370
Tensile Strength: Yield (Proof), MPa 140
180 to 300

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 840
1430
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 67
53
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 390
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
75 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 88
86 to 240
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.6
12 to 13
Strength to Weight: Bending, points 11
14 to 15
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 11
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 86 to 88.5
0
Iron (Fe), % 0 to 0.2
99.43 to 99.75
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0