MakeItFrom.com
Menu (ESC)

C92700 Bronze vs. AWS E630

C92700 bronze belongs to the copper alloys classification, while AWS E630 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92700 bronze and the bottom bar is AWS E630.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
8.0
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 290
1040

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 840
1380
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 47
17
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 35
14
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 58
40
Embodied Water, L/kg 390
140

Common Calculations

Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.1
37
Strength to Weight: Bending, points 11
29
Thermal Diffusivity, mm2/s 15
4.5
Thermal Shock Resistance, points 11
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 16.8
Copper (Cu), % 86 to 89
3.3 to 4.0
Iron (Fe), % 0 to 0.2
71.6 to 75.9
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0.25 to 0.75
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.0
4.5 to 5.0
Niobium (Nb), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.7
0