MakeItFrom.com
Menu (ESC)

C92700 Bronze vs. C19200 Copper

Both C92700 bronze and C19200 copper are copper alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C92700 bronze and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 9.1
2.0 to 35
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 77
38 to 76
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 290
280 to 530
Tensile Strength: Yield (Proof), MPa 150
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 840
1080
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 47
240
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 11
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 58
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 110
42 to 1120
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.1
8.8 to 17
Strength to Weight: Bending, points 11
11 to 16
Thermal Diffusivity, mm2/s 15
69
Thermal Shock Resistance, points 11
10 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 86 to 89
98.5 to 99.19
Iron (Fe), % 0 to 0.2
0.8 to 1.2
Lead (Pb), % 1.0 to 2.5
0 to 0.030
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0.010 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.7
0 to 0.2
Residuals, % 0 to 0.7
0 to 0.2