MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. ASTM A372 Grade A Steel

C92900 bronze belongs to the copper alloys classification, while ASTM A372 grade A steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is ASTM A372 grade A steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
140
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 350
500
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 35
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 61
18
Embodied Water, L/kg 390
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
95
Resilience: Unit (Modulus of Resilience), kJ/m3 170
200
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
18
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 18
14
Thermal Shock Resistance, points 13
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
98.3 to 99.85
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0