MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. EN 1.1170 Steel

C92900 bronze belongs to the copper alloys classification, while EN 1.1170 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is EN 1.1170 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
16 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 350
640 to 730
Tensile Strength: Yield (Proof), MPa 190
330 to 500

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 35
2.1
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.5
Embodied Energy, MJ/kg 61
19
Embodied Water, L/kg 390
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
91 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
290 to 670
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
23 to 26
Strength to Weight: Bending, points 13
21 to 23
Thermal Diffusivity, mm2/s 18
13
Thermal Shock Resistance, points 13
20 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
96.7 to 98.5
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 2.8 to 4.0
0 to 0.4
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0