MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. EN 1.7233 Steel

C92900 bronze belongs to the copper alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
210 to 290
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
18 to 23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 350
700 to 960
Tensile Strength: Yield (Proof), MPa 190
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
3.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.6
Embodied Energy, MJ/kg 61
21
Embodied Water, L/kg 390
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
380 to 1630
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
25 to 34
Strength to Weight: Bending, points 13
22 to 28
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 13
21 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.39 to 0.45
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
96.2 to 97.5
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Nickel (Ni), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0