MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. CR016A Copper

Both C92900 bronze and CR016A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is CR016A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 9.1
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 350
230
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1030
1090
Melting Onset (Solidus), °C 860
1040
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 58
390
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
98
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
99

Otherwise Unclassified Properties

Base Metal Price, % relative 35
35
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 61
42
Embodied Water, L/kg 390
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170
83
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
7.1
Strength to Weight: Bending, points 13
9.3
Thermal Diffusivity, mm2/s 18
110
Thermal Shock Resistance, points 13
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Bismuth (Bi), % 0
0 to 0.00050
Copper (Cu), % 82 to 86
99.843 to 99.919
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 2.0 to 3.2
0
Nickel (Ni), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 1.5
0.0010 to 0.0070
Silicon (Si), % 0 to 0.0050
0
Silver (Ag), % 0
0.080 to 0.12
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0