MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. Grade CW6MC Nickel

C92900 bronze belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 350
540
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1030
1480
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 370
440
Thermal Conductivity, W/m-K 58
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 35
80
Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 3.8
14
Embodied Energy, MJ/kg 61
200
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
240
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11
18
Strength to Weight: Bending, points 13
17
Thermal Diffusivity, mm2/s 18
2.8
Thermal Shock Resistance, points 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
0 to 5.0
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 2.8 to 4.0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0