MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. S35140 Stainless Steel

C92900 bronze belongs to the copper alloys classification, while S35140 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 350
690
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 860
1370
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
31
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.8
5.5
Embodied Energy, MJ/kg 61
78
Embodied Water, L/kg 390
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
190
Resilience: Unit (Modulus of Resilience), kJ/m3 170
250
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
24
Strength to Weight: Bending, points 13
22
Thermal Diffusivity, mm2/s 18
3.7
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
44.1 to 52.7
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 2.8 to 4.0
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0