MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. AWS E110C-K4

C93200 bronze belongs to the copper alloys classification, while AWS E110C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is AWS E110C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20
17
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 240
850
Tensile Strength: Yield (Proof), MPa 130
780

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 850
1410
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 59
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.7
Embodied Energy, MJ/kg 52
23
Embodied Water, L/kg 370
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
140
Resilience: Unit (Modulus of Resilience), kJ/m3 76
1600
Stiffness to Weight: Axial, points 6.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.5
30
Strength to Weight: Bending, points 9.7
25
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 9.3
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.15 to 0.65
Copper (Cu), % 81 to 85
0 to 0.35
Iron (Fe), % 0 to 0.2
92.1 to 98.4
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0 to 1.0
0.5 to 2.5
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.025
Tin (Sn), % 6.3 to 7.5
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0 to 0.5