MakeItFrom.com
Menu (ESC)

C93800 Bronze vs. AWS E320

C93800 bronze belongs to the copper alloys classification, while AWS E320 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C93800 bronze and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 96
200
Elongation at Break, % 9.7
34
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 35
77
Tensile Strength: Ultimate (UTS), MPa 200
620

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 850
1360
Specific Heat Capacity, J/kg-K 340
460
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
38
Density, g/cm3 9.1
8.2
Embodied Carbon, kg CO2/kg material 3.2
6.5
Embodied Energy, MJ/kg 51
91
Embodied Water, L/kg 380
220

Common Calculations

Stiffness to Weight: Axial, points 5.9
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 6.1
21
Strength to Weight: Bending, points 8.4
20
Thermal Shock Resistance, points 8.1
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 75 to 79
3.0 to 4.0
Iron (Fe), % 0 to 0.15
31.8 to 43.5
Lead (Pb), % 13 to 16
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.6
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0