MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. EN 2.4668 Nickel

C93900 bronze belongs to the copper alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
190
Elongation at Break, % 5.6
14
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 35
75
Tensile Strength: Ultimate (UTS), MPa 190
1390
Tensile Strength: Yield (Proof), MPa 130
1160

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 140
980
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 850
1410
Specific Heat Capacity, J/kg-K 340
450
Thermal Conductivity, W/m-K 52
13
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
75
Density, g/cm3 9.1
8.3
Embodied Carbon, kg CO2/kg material 3.0
13
Embodied Energy, MJ/kg 49
190
Embodied Water, L/kg 360
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.5
180
Resilience: Unit (Modulus of Resilience), kJ/m3 83
3490
Stiffness to Weight: Axial, points 5.8
13
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 5.9
46
Strength to Weight: Bending, points 8.1
33
Thermal Diffusivity, mm2/s 17
3.5
Thermal Shock Resistance, points 7.5
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.3 to 0.7
Antimony (Sb), % 0 to 0.5
0
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 76.5 to 79.5
0 to 0.3
Iron (Fe), % 0 to 0.4
11.2 to 24.6
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 0.8
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0