MakeItFrom.com
Menu (ESC)

C94100 Bronze vs. ASTM A182 Grade F122

C94100 bronze belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C94100 bronze and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 92
190
Elongation at Break, % 7.8
23
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 34
76
Tensile Strength: Ultimate (UTS), MPa 190
710
Tensile Strength: Yield (Proof), MPa 130
450

Thermal Properties

Latent Heat of Fusion, J/g 160
270
Maximum Temperature: Mechanical, °C 130
600
Melting Completion (Liquidus), °C 870
1490
Melting Onset (Solidus), °C 790
1440
Specific Heat Capacity, J/kg-K 330
470
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 9.2
8.0
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 48
44
Embodied Water, L/kg 370
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 97
520
Stiffness to Weight: Axial, points 5.5
14
Stiffness to Weight: Bending, points 16
24
Strength to Weight: Axial, points 5.8
25
Strength to Weight: Bending, points 8.1
22
Thermal Shock Resistance, points 7.6
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 0.020
Antimony (Sb), % 0 to 0.8
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 72 to 79
0.3 to 1.7
Iron (Fe), % 0 to 0.25
81.3 to 87.7
Lead (Pb), % 18 to 22
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 4.5 to 6.5
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 1.3
0