MakeItFrom.com
Menu (ESC)

C94500 Bronze vs. EN 1.0034 Steel

C94500 bronze belongs to the copper alloys classification, while EN 1.0034 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C94500 bronze and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 92
190
Elongation at Break, % 12
9.0 to 32
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 34
73
Tensile Strength: Ultimate (UTS), MPa 170
340 to 380
Tensile Strength: Yield (Proof), MPa 83
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 160
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 330
470
Thermal Conductivity, W/m-K 52
53
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 9.3
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 51
18
Embodied Water, L/kg 380
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 37
84 to 210
Stiffness to Weight: Axial, points 5.5
13
Stiffness to Weight: Bending, points 16
24
Strength to Weight: Axial, points 5.2
12 to 13
Strength to Weight: Bending, points 7.4
14 to 15
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 6.7
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 66.7 to 78
0
Iron (Fe), % 0 to 0.15
98.7 to 100
Lead (Pb), % 16 to 22
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.045
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 1.2
0