MakeItFrom.com
Menu (ESC)

C94900 Bronze vs. EN 1.4313 Stainless Steel

C94900 bronze belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C94900 bronze and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
12 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 300
750 to 1000
Tensile Strength: Yield (Proof), MPa 130
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 910
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
10
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.4
Embodied Energy, MJ/kg 55
34
Embodied Water, L/kg 350
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 72
870 to 2100
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.4
27 to 36
Strength to Weight: Bending, points 11
23 to 28
Thermal Shock Resistance, points 11
27 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 79 to 81
0
Iron (Fe), % 0 to 0.3
78.5 to 84.2
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 4.0 to 6.0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.8
0