MakeItFrom.com
Menu (ESC)

C94900 Bronze vs. C40500 Penny Bronze

Both C94900 bronze and C40500 penny bronze are copper alloys. They have 85% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C94900 bronze and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
3.0 to 49
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 300
270 to 540
Tensile Strength: Yield (Proof), MPa 130
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 980
1060
Melting Onset (Solidus), °C 910
1020
Specific Heat Capacity, J/kg-K 370
380
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
41
Electrical Conductivity: Equal Weight (Specific), % IACS 14
42

Otherwise Unclassified Properties

Base Metal Price, % relative 32
30
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 55
43
Embodied Water, L/kg 350
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 72
28 to 1200
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.4
8.5 to 17
Strength to Weight: Bending, points 11
10 to 17
Thermal Shock Resistance, points 11
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 79 to 81
94 to 96
Iron (Fe), % 0 to 0.3
0 to 0.050
Lead (Pb), % 4.0 to 6.0
0 to 0.050
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.0 to 6.0
0.7 to 1.3
Zinc (Zn), % 4.0 to 6.0
2.1 to 5.3
Residuals, % 0 to 0.8
0 to 0.5