MakeItFrom.com
Menu (ESC)

C94900 Bronze vs. C48600 Brass

Both C94900 bronze and C48600 brass are copper alloys. They have 68% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94900 bronze and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 17
20 to 25
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 300
280 to 360
Tensile Strength: Yield (Proof), MPa 130
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 980
900
Melting Onset (Solidus), °C 910
890
Specific Heat Capacity, J/kg-K 370
380
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
25
Electrical Conductivity: Equal Weight (Specific), % IACS 14
28

Otherwise Unclassified Properties

Base Metal Price, % relative 32
24
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 55
47
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 72
61 to 140
Stiffness to Weight: Axial, points 6.9
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.4
9.5 to 12
Strength to Weight: Bending, points 11
12 to 14
Thermal Shock Resistance, points 11
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Arsenic (As), % 0
0.020 to 0.25
Copper (Cu), % 79 to 81
59 to 62
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 4.0 to 6.0
1.0 to 2.5
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.0 to 6.0
0.3 to 1.5
Zinc (Zn), % 4.0 to 6.0
33.4 to 39.7
Residuals, % 0 to 0.8
0 to 0.4