MakeItFrom.com
Menu (ESC)

C94900 Bronze vs. C96400 Copper-nickel

Both C94900 bronze and C96400 copper-nickel are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 72% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C94900 bronze and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 17
25
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
51
Tensile Strength: Ultimate (UTS), MPa 300
490
Tensile Strength: Yield (Proof), MPa 130
260

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 980
1240
Melting Onset (Solidus), °C 910
1170
Specific Heat Capacity, J/kg-K 370
400
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
45
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 3.4
5.9
Embodied Energy, MJ/kg 55
87
Embodied Water, L/kg 350
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
100
Resilience: Unit (Modulus of Resilience), kJ/m3 72
250
Stiffness to Weight: Axial, points 6.9
8.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.4
15
Strength to Weight: Bending, points 11
16
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 79 to 81
62.3 to 71.3
Iron (Fe), % 0 to 0.3
0.25 to 1.5
Lead (Pb), % 4.0 to 6.0
0 to 0.010
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 4.0 to 6.0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.020
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.8
0 to 0.5