MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. Grade M35-1 Nickel

C95200 bronze belongs to the copper alloys classification, while grade M35-1 nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is grade M35-1 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
160
Elongation at Break, % 29
28
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 42
62
Tensile Strength: Ultimate (UTS), MPa 520
500
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
900
Melting Completion (Liquidus), °C 1050
1280
Melting Onset (Solidus), °C 1040
1240
Specific Heat Capacity, J/kg-K 430
430
Thermal Conductivity, W/m-K 50
22
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
55
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 50
120
Embodied Water, L/kg 380
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120
Stiffness to Weight: Axial, points 7.6
10
Stiffness to Weight: Bending, points 19
21
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 14
5.7
Thermal Shock Resistance, points 19
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.35
Copper (Cu), % 86 to 89
26 to 33
Iron (Fe), % 2.5 to 4.0
0 to 3.5
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
59.8 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.3
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 1.0
0