MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. EN 2.4668 Nickel

C95400 bronze belongs to the copper alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.1 to 16
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 600 to 710
1390
Tensile Strength: Yield (Proof), MPa 240 to 360
1160

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
980
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 440
450
Thermal Conductivity, W/m-K 59
13
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
75
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 3.2
13
Embodied Energy, MJ/kg 53
190
Embodied Water, L/kg 390
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
180
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
3490
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 20 to 24
46
Strength to Weight: Bending, points 19 to 22
33
Thermal Diffusivity, mm2/s 16
3.5
Thermal Shock Resistance, points 21 to 25
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 83 to 87
0 to 0.3
Iron (Fe), % 3.0 to 5.0
11.2 to 24.6
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 1.5
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2
Residuals, % 0 to 0.5
0