MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. ASTM A387 Grade 91 Class 2

C95500 bronze belongs to the copper alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
200
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.4 to 10
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Tensile Strength: Ultimate (UTS), MPa 700 to 850
670
Tensile Strength: Yield (Proof), MPa 320 to 470
470

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
600
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 42
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 57
37
Embodied Water, L/kg 390
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
120
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
580
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24 to 29
24
Strength to Weight: Bending, points 21 to 24
22
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 24 to 29
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
87.3 to 90.3
Manganese (Mn), % 0 to 3.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 3.0 to 5.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0