MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. ASTM Grade LCB Steel

C95500 bronze belongs to the copper alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.4 to 10
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 700 to 850
540
Tensile Strength: Yield (Proof), MPa 320 to 470
270

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 42
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.4
Embodied Energy, MJ/kg 57
18
Embodied Water, L/kg 390
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
120
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
200
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24 to 29
19
Strength to Weight: Bending, points 21 to 24
19
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 24 to 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
97 to 100
Manganese (Mn), % 0 to 3.5
0 to 1.0
Nickel (Ni), % 3.0 to 5.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Residuals, % 0 to 0.5
0 to 1.0