MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. EN 1.4512 Stainless Steel

C95500 bronze belongs to the copper alloys classification, while EN 1.4512 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is EN 1.4512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.4 to 10
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 700 to 850
470
Tensile Strength: Yield (Proof), MPa 320 to 470
240

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
720
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 42
25
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
6.5
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.0
Embodied Energy, MJ/kg 57
27
Embodied Water, L/kg 390
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
110
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
150
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24 to 29
17
Strength to Weight: Bending, points 21 to 24
17
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 24 to 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 78 to 84
0
Iron (Fe), % 3.0 to 5.0
84.8 to 89.5
Manganese (Mn), % 0 to 3.5
0 to 1.0
Nickel (Ni), % 3.0 to 5.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.65
Residuals, % 0 to 0.5
0