MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4490 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4490 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4490 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 660
560
Tensile Strength: Yield (Proof), MPa 270
260

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
990
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 36
15
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.7
Embodied Energy, MJ/kg 55
52
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 310
170
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 9.9
4.1
Thermal Shock Resistance, points 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
61.7 to 70.9
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 4.0 to 5.0
9.0 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0