MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. SAE-AISI 1022 Steel

C96300 copper-nickel belongs to the copper alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
17 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
480 to 550
Tensile Strength: Yield (Proof), MPa 430
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
52
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 42
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
1.4
Embodied Energy, MJ/kg 76
18
Embodied Water, L/kg 290
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 720
190 to 530
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
17 to 19
Strength to Weight: Bending, points 17
17 to 19
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 20
15 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.18 to 0.23
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
98.7 to 99.12
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.7 to 1.0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0 to 0.050
Residuals, % 0 to 0.5
0