MakeItFrom.com
Menu (ESC)

C96600 Copper vs. EN 1.4832 Stainless Steel

C96600 copper belongs to the copper alloys classification, while EN 1.4832 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is EN 1.4832 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 7.0
11
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
77
Tensile Strength: Ultimate (UTS), MPa 760
510
Tensile Strength: Yield (Proof), MPa 480
260

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 280
950
Melting Completion (Liquidus), °C 1180
1400
Melting Onset (Solidus), °C 1100
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 65
19
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 7.0
3.6
Embodied Energy, MJ/kg 100
51
Embodied Water, L/kg 280
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
48
Resilience: Unit (Modulus of Resilience), kJ/m3 830
170
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 8.4
3.7
Thermal Shock Resistance, points 25
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0.15 to 0.35
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
58.6 to 67.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 29 to 33
13 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0.5 to 2.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0