MakeItFrom.com
Menu (ESC)

C96700 Copper vs. ASTM A356 Grade 2

C96700 copper belongs to the copper alloys classification, while ASTM A356 grade 2 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is ASTM A356 grade 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 1210
510
Tensile Strength: Yield (Proof), MPa 550
270

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 310
410
Melting Completion (Liquidus), °C 1170
1470
Melting Onset (Solidus), °C 1110
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
51
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
2.4
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 280
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
190
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 8.5
14
Thermal Shock Resistance, points 40
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
97.7 to 99.55
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 29 to 33
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0