MakeItFrom.com
Menu (ESC)

C96700 Copper vs. C95500 Bronze

Both C96700 copper and C95500 bronze are copper alloys. They have 72% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 10
8.4 to 10
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 53
44
Tensile Strength: Ultimate (UTS), MPa 1210
700 to 850
Tensile Strength: Yield (Proof), MPa 550
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 310
230
Melting Completion (Liquidus), °C 1170
1050
Melting Onset (Solidus), °C 1110
1040
Specific Heat Capacity, J/kg-K 400
450
Thermal Conductivity, W/m-K 30
42
Thermal Expansion, µm/m-K 15
18

Otherwise Unclassified Properties

Base Metal Price, % relative 90
28
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 9.5
3.5
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 280
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
420 to 950
Stiffness to Weight: Axial, points 8.9
8.0
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 38
24 to 29
Strength to Weight: Bending, points 29
21 to 24
Thermal Diffusivity, mm2/s 8.5
11
Thermal Shock Resistance, points 40
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
10 to 11.5
Beryllium (Be), % 1.1 to 1.2
0
Copper (Cu), % 62.4 to 68.8
78 to 84
Iron (Fe), % 0.4 to 1.0
3.0 to 5.0
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 3.5
Nickel (Ni), % 29 to 33
3.0 to 5.5
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0 to 0.5