MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. S31100 Stainless Steel

C96900 copper-nickel belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.5
4.5
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 45
79
Tensile Strength: Ultimate (UTS), MPa 850
1000
Tensile Strength: Yield (Proof), MPa 830
710

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 960
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 39
16
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 4.6
3.1
Embodied Energy, MJ/kg 72
44
Embodied Water, L/kg 360
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
40
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
1240
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27
36
Strength to Weight: Bending, points 23
29
Thermal Shock Resistance, points 30
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
63.6 to 69
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Nickel (Ni), % 14.5 to 15.5
6.0 to 7.0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0