MakeItFrom.com
Menu (ESC)

C97400 Nickel Silver vs. AISI 316L Stainless Steel

C97400 nickel silver belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C97400 nickel silver and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 20
9.0 to 50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 260
530 to 1160
Tensile Strength: Yield (Proof), MPa 120
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 1100
1400
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 27
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
19
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 4.1
3.9
Embodied Energy, MJ/kg 64
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 59
93 to 1880
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.5
19 to 41
Strength to Weight: Bending, points 11
18 to 31
Thermal Diffusivity, mm2/s 8.3
4.1
Thermal Shock Resistance, points 8.8
12 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 1.5
62 to 72
Lead (Pb), % 4.5 to 5.5
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 15.5 to 17
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.5 to 3.5
0
Zinc (Zn), % 10 to 19.5
0
Residuals, % 0 to 1.0
0