MakeItFrom.com
Menu (ESC)

C97800 Nickel Silver vs. AWS E33-31

C97800 nickel silver belongs to the copper alloys classification, while AWS E33-31 belongs to the iron alloys. They have a modest 27% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C97800 nickel silver and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
210
Elongation at Break, % 10
29
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 48
81
Tensile Strength: Ultimate (UTS), MPa 370
810

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Melting Completion (Liquidus), °C 1180
1380
Melting Onset (Solidus), °C 1140
1330
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 40
36
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 5.1
6.0
Embodied Energy, MJ/kg 76
86
Embodied Water, L/kg 330
260

Common Calculations

Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
28
Strength to Weight: Bending, points 13
24
Thermal Shock Resistance, points 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
31 to 35
Copper (Cu), % 64 to 67
0.4 to 0.8
Iron (Fe), % 0 to 1.5
24.7 to 34.8
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 24 to 27
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.9
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 4.0 to 5.5
0
Zinc (Zn), % 1.0 to 4.0
0
Residuals, % 0 to 0.4
0