MakeItFrom.com
Menu (ESC)

C99500 Copper vs. SAE-AISI 1065 Steel

C99500 copper belongs to the copper alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
11 to 14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
72
Tensile Strength: Ultimate (UTS), MPa 540
710 to 780
Tensile Strength: Yield (Proof), MPa 310
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
11
Electrical Conductivity: Equal Weight (Specific), % IACS 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 410
490 to 820
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
25 to 28
Strength to Weight: Bending, points 17
23 to 24
Thermal Shock Resistance, points 19
25 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.6 to 0.7
Copper (Cu), % 82.5 to 92
0
Iron (Fe), % 3.0 to 5.0
98.3 to 98.8
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 2.0
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0