MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. C19200 Copper

N06025 nickel belongs to the nickel alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 32
2.0 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 500
190 to 300
Tensile Strength: Ultimate (UTS), MPa 760
280 to 530
Tensile Strength: Yield (Proof), MPa 310
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1350
1080
Melting Onset (Solidus), °C 1300
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
240
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 50
30
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 8.4
2.6
Embodied Energy, MJ/kg 120
41
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 240
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
8.8 to 17
Strength to Weight: Bending, points 22
11 to 16
Thermal Diffusivity, mm2/s 2.9
69
Thermal Shock Resistance, points 21
10 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.8 to 2.4
0
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
98.5 to 99.19
Iron (Fe), % 8.0 to 11
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 59.2 to 65.9
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.2