MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. EN AC-46500 Aluminum

N06060 nickel belongs to the nickel alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
74
Elongation at Break, % 45
1.0
Fatigue Strength, MPa 230
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
28
Tensile Strength: Ultimate (UTS), MPa 700
270
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 320
520
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1510
610
Melting Onset (Solidus), °C 1450
520
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 12
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 280
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 20
32
Thermal Shock Resistance, points 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.15
Copper (Cu), % 0.25 to 1.3
2.0 to 4.0
Iron (Fe), % 0 to 14
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 1.5
0 to 0.55
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0 to 0.55
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
8.0 to 11
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25