MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. ASTM A182 Grade F22V

N06455 nickel belongs to the nickel alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 47
21
Fatigue Strength, MPa 290
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 82
74
Shear Strength, MPa 550
420
Tensile Strength: Ultimate (UTS), MPa 780
670
Tensile Strength: Yield (Proof), MPa 330
460

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 960
460
Melting Completion (Liquidus), °C 1510
1470
Melting Onset (Solidus), °C 1450
1430
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 10
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 65
4.2
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 12
2.5
Embodied Energy, MJ/kg 160
35
Embodied Water, L/kg 290
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 2.7
11
Thermal Shock Resistance, points 24
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0 to 0.015
0.11 to 0.15
Chromium (Cr), % 14 to 18
2.0 to 2.5
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 3.0
94.6 to 96.4
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 14 to 17
0.9 to 1.1
Nickel (Ni), % 58.1 to 72
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 0.080
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0 to 0.7
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35