MakeItFrom.com
Menu (ESC)

N06455 Nickel vs. AWS E90C-B9

N06455 nickel belongs to the nickel alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06455 nickel and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 47
18
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 82
75
Tensile Strength: Ultimate (UTS), MPa 780
710
Tensile Strength: Yield (Proof), MPa 330
460

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 10
25
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 65
7.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 12
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 290
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 2.7
6.9
Thermal Shock Resistance, points 24
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.015
0.080 to 0.13
Chromium (Cr), % 14 to 18
8.0 to 10.5
Cobalt (Co), % 0 to 2.0
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 3.0
84.4 to 90.9
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 14 to 17
0.85 to 1.2
Nickel (Ni), % 58.1 to 72
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.7
0
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5