MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. S42010 Stainless Steel

N06975 nickel belongs to the nickel alloys classification, while S42010 stainless steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06975 nickel and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
18
Fatigue Strength, MPa 210
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 470
370
Tensile Strength: Ultimate (UTS), MPa 660
590
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1000
800
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 50
8.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 8.9
2.2
Embodied Energy, MJ/kg 120
30
Embodied Water, L/kg 270
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
95
Resilience: Unit (Modulus of Resilience), kJ/m3 150
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 18
21

Alloy Composition

Carbon (C), % 0 to 0.030
0.15 to 0.3
Chromium (Cr), % 23 to 26
13.5 to 15
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 10.2 to 23.6
80.9 to 85.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 5.0 to 7.0
0.4 to 0.85
Nickel (Ni), % 47 to 52
0.35 to 0.85
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.7 to 1.5
0