MakeItFrom.com
Menu (ESC)

N07750 Nickel vs. C87200 Bronze

N07750 nickel belongs to the nickel alloys classification, while C87200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N07750 nickel and the bottom bar is C87200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 1200
380
Tensile Strength: Yield (Proof), MPa 820
170

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1430
970
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 460
410
Thermal Conductivity, W/m-K 13
28
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.4
8.6
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
93
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
130
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 40
12
Strength to Weight: Bending, points 30
14
Thermal Diffusivity, mm2/s 3.3
8.0
Thermal Shock Resistance, points 36
14

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
0 to 1.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
89 to 99
Iron (Fe), % 5.0 to 9.0
0 to 2.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 70 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0 to 0.5
1.0 to 5.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
0 to 5.0