MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. 5052 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while 5052 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 15 to 34
1.1 to 22
Fatigue Strength, MPa 210 to 240
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 380 to 410
120 to 180
Tensile Strength: Ultimate (UTS), MPa 610 to 620
190 to 320
Tensile Strength: Yield (Proof), MPa 270 to 420
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1360
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 6.6
8.6
Embodied Energy, MJ/kg 92
150
Embodied Water, L/kg 220
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
41 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
19 to 33
Strength to Weight: Bending, points 20
27 to 38
Thermal Diffusivity, mm2/s 3.2
57
Thermal Shock Resistance, points 15
8.3 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0.15 to 0.35
Copper (Cu), % 3.0 to 4.0
0 to 0.1
Iron (Fe), % 29.9 to 44
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants