MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. C94300 Bronze

N08020 stainless steel belongs to the iron alloys classification, while C94300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is C94300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
87
Elongation at Break, % 15 to 34
9.7
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 77
32
Tensile Strength: Ultimate (UTS), MPa 610 to 620
180
Tensile Strength: Yield (Proof), MPa 270 to 420
120

Thermal Properties

Latent Heat of Fusion, J/g 300
150
Maximum Temperature: Mechanical, °C 1100
110
Melting Completion (Liquidus), °C 1410
820
Melting Onset (Solidus), °C 1360
760
Specific Heat Capacity, J/kg-K 460
320
Thermal Conductivity, W/m-K 12
63
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 38
28
Density, g/cm3 8.2
9.3
Embodied Carbon, kg CO2/kg material 6.6
2.9
Embodied Energy, MJ/kg 92
47
Embodied Water, L/kg 220
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
15
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
77
Stiffness to Weight: Axial, points 13
5.2
Stiffness to Weight: Bending, points 24
16
Strength to Weight: Axial, points 21
5.2
Strength to Weight: Bending, points 20
7.4
Thermal Diffusivity, mm2/s 3.2
21
Thermal Shock Resistance, points 15
7.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
67 to 72
Iron (Fe), % 29.9 to 44
0 to 0.15
Lead (Pb), % 0
23 to 27
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0 to 1.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.035
0 to 0.080
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0