MakeItFrom.com
Menu (ESC)

N08028 Stainless Steel vs. C61800 Bronze

N08028 stainless steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08028 stainless steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
26
Fatigue Strength, MPa 220
190
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 80
89
Shear Modulus, GPa 80
44
Shear Strength, MPa 400
310
Tensile Strength: Ultimate (UTS), MPa 570
740
Tensile Strength: Yield (Proof), MPa 240
310

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1420
1050
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 12
64
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 37
28
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 6.4
3.1
Embodied Energy, MJ/kg 89
52
Embodied Water, L/kg 240
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
150
Resilience: Unit (Modulus of Resilience), kJ/m3 140
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 3.2
18
Thermal Shock Resistance, points 12
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0.6 to 1.4
86.9 to 91
Iron (Fe), % 29 to 40.4
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 30 to 34
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5