MakeItFrom.com
Menu (ESC)

N08028 Stainless Steel vs. C72150 Copper-nickel

N08028 stainless steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08028 stainless steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
99
Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 45
29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
55
Shear Strength, MPa 400
320
Tensile Strength: Ultimate (UTS), MPa 570
490
Tensile Strength: Yield (Proof), MPa 240
210

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1420
1210
Melting Onset (Solidus), °C 1370
1250
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 12
22
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 37
45
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.4
6.1
Embodied Energy, MJ/kg 89
88
Embodied Water, L/kg 240
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
150
Stiffness to Weight: Axial, points 14
9.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 19
15
Thermal Diffusivity, mm2/s 3.2
6.0
Thermal Shock Resistance, points 12
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0.6 to 1.4
52.5 to 57
Iron (Fe), % 29 to 40.4
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.5
0 to 0.050
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 30 to 34
43 to 46
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5