MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. 6016 Aluminum

N08031 stainless steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 45
11 to 27
Fatigue Strength, MPa 290
68 to 89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 510
130 to 170
Tensile Strength: Ultimate (UTS), MPa 730
200 to 280
Tensile Strength: Yield (Proof), MPa 310
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
190 to 210
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 7.1
8.2
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 240
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 230
82 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 25
21 to 29
Strength to Weight: Bending, points 22
29 to 35
Thermal Diffusivity, mm2/s 3.1
77 to 86
Thermal Shock Resistance, points 14
9.1 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 26 to 28
0 to 0.1
Copper (Cu), % 1.0 to 1.4
0 to 0.2
Iron (Fe), % 29 to 36.9
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 30 to 32
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
1.0 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15