MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. EN 1.4630 Stainless Steel

Both N08031 stainless steel and EN 1.4630 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 49% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
23
Fatigue Strength, MPa 290
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 510
300
Tensile Strength: Ultimate (UTS), MPa 730
480
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 460
520
Maximum Temperature: Mechanical, °C 1100
800
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 18
10

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 7.1
2.5
Embodied Energy, MJ/kg 96
36
Embodied Water, L/kg 240
120

Common Calculations

PREN (Pitting Resistance) 52
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
92
Resilience: Unit (Modulus of Resilience), kJ/m3 230
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.1
7.5
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0 to 0.015
0 to 0.030
Chromium (Cr), % 26 to 28
13 to 16
Copper (Cu), % 1.0 to 1.4
0 to 0.5
Iron (Fe), % 29 to 36.9
77.1 to 86.7
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
0 to 0.5
Nickel (Ni), % 30 to 32
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.3
0.2 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.8