MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 3003 Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 3003 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 3003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 46
1.1 to 28
Fatigue Strength, MPa 220
39 to 90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 400
68 to 130
Tensile Strength: Ultimate (UTS), MPa 570
110 to 240
Tensile Strength: Yield (Proof), MPa 240
40 to 210

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
640
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 6.8
8.1
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
0.95 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 140
11 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
11 to 24
Strength to Weight: Bending, points 19
18 to 30
Thermal Shock Resistance, points 13
4.7 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.8 to 99
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0 to 0.7
0.050 to 0.2
Iron (Fe), % 30.2 to 42.3
0 to 0.7
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15