MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 4006 Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 46
3.4 to 24
Fatigue Strength, MPa 220
35 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 400
70 to 91
Tensile Strength: Ultimate (UTS), MPa 570
110 to 160
Tensile Strength: Yield (Proof), MPa 240
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
620
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.0
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 6.8
8.1
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 140
28 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
11 to 16
Strength to Weight: Bending, points 19
19 to 24
Thermal Shock Resistance, points 13
4.9 to 7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0 to 0.2
Copper (Cu), % 0 to 0.7
0 to 0.1
Iron (Fe), % 30.2 to 42.3
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0.8 to 1.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15