MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 5652 Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 46
6.8 to 25
Fatigue Strength, MPa 220
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 400
110 to 170
Tensile Strength: Ultimate (UTS), MPa 570
190 to 290
Tensile Strength: Yield (Proof), MPa 240
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 6.8
8.6
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 140
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 19
20 to 30
Strength to Weight: Bending, points 19
27 to 36
Thermal Shock Resistance, points 13
8.4 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0.15 to 0.35
Copper (Cu), % 0 to 0.7
0 to 0.040
Iron (Fe), % 30.2 to 42.3
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 1.0
0 to 0.010
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15